Topics: Functionzc. Please see topics Functionzc.

It is assumed that terms like mabrot, nova, zcLogisticMap, disc, zcSand are known from this website.

Used functions:
inverse(z)=1/z
sqr(z)=z^2
divide(z,c)=z/c

Clicking on the thumbnail image, a large version is shown.
nova

s=0.0
zcMabrot

s=0.0
zcLogistic

s=0.5
zcLogistic

s=0.5
zcMabrot

s=0.0
mabrot

s=0.0
\(\mathbf{\bf\: tan(nova-3.0)+c}\)
\(\mathbf{\bf\: log(zcMabrot-0.76)+c}\)
\(\mathbf{\bf\: sin(zcLogistic-7.0)+c}\)
\(\mathbf{\bf\: sqrt(zcLogistic+1.0)+c}\)
\(\mathbf{\bf\: log(atan(zcMabrot+2.0))+c}\)
\(\mathbf{\bf\: exp(atan(mabrot-1.0))+c}\)
moon

s=0.0
desertTri

s=0.0
mabrot

s=infinity
nova

s=1.0
zcLogistic

s=0.5
blueDouble

s=0.0
\(\mathbf{\bf\: log(c*moon+c)}\)
\(\mathbf{\bf\: cosh(log(desertTri+1.0+c))}\)
\(\mathbf{\bf\: divide(sqr(z);mabrot)}\)
\(\mathbf{\bf\: inverse(nova)}\)
\(\mathbf{\bf\: inverse(zcLogistic-1.7+c)))}\)
\(\mathbf{\bf\: divide(blueDouble;mabrot+0.5))}\)
mabrot

s=0.0
expRow

s=0.0
expRow

s=0.0
desertTri

s=0.0
blueDouble

s=0.0
bigFoot

s=0.0
\(\mathbf{\bf\: catan(mabrot(z;sqr(c))+c)))}\)
\(\mathbf{\bf\: log(expRow(z;sqr(c))-0.13+c)}\)
\(\mathbf{\bf\: sqr(log(expRow+c))}\)
\(\mathbf{\bf\: sqr(desertTri+c)))}\)
\(\mathbf{\bf\: sqr(log(blueDouble+c)))}\)
\(\mathbf{\bf\: log(bigFoot+c)}\)