c-Transformation - Ric's Fractal Exhibition
Home
Generation Functions
Function Blog
Blog
Video Blog
Rendering Variants
Old Website
Math
Download Tierazon2 with Examples
Contact Me
History
Topics: c-Transformation. Please see
topics c-Transformation
.
It is assumed that terms like
mabrot, nova, zcLogisticMap, disc, zcSand
are known from this website.
Clicking on the thumbnail image, a large version is shown.
mabrot
s=0.0
nova
s=1.0
amoeba
s=1.0
blueDouble
s=0.0
bigFoot
s=0.0
disc
s=0.249962
\(\mathbf{\bf\: sin(c+\frac{1}{c})}\)
\(\mathbf{\bf\: log(exp(c^2))}\)
\(\mathbf{\bf\: c^2}\)
\(\mathbf{\bf\: sinh(c)}\)
\(\mathbf{\bf\: sec(c^2)}\)
\(\mathbf{\bf\: dawson(c)}\)
moon
s=1.0
stone
s=1.0
novaTri
s=1.0
nova
s=1.0
xNova
s=1.0
expRow
s=0.0
\(\mathbf{\bf\: stirling(c)}\)
\(\mathbf{\bf\: log(c^2)}\)
\(\mathbf{\bf\: gamma(c)}\)
\(\mathbf{\bf\: log(sin(c)*cos(c))}\)
\(\mathbf{\bf\: log(exp(c^2+c))}\)
\(\mathbf{\bf\: c^2+\frac{1}{c}}\)
expRow
s=0.0
expRow
s=0.0
mabrot
s=0.0
nova
s=1.0
zcLogistic
s=0.5
doubleMabrot
s=1.0
\(\mathbf{\bf\: i*(c^2+\frac{1}{c})}\)
\(\mathbf{\bf\: gamma(c^2)}\)
\(\mathbf{\bf\: errorFunction(\frac{1}{c})}\)
\(\mathbf{\bf\: errorFunction(\frac{1}{c}) }\)
\(\mathbf{\bf\: gamma(c+\frac{1}{c}) }\)
\(\mathbf{\bf\: atanh(tanh(c+\frac{1}{c})) }\)