Desert pictures are when f(z)=P1(z) / P2(z), with P1,P2 polynomials and degree(P1)≤degree(P2).
This results in more or less rough pictures with a brown surrounding in the standard rendering.
In the table scaled 0.8 is the scale value of the function: scale*f(z,c): 0.8*f(z,c).
In the table s=0.25 is the start value 0.25 of the iteration. Please see math basics.
In the table the link "scaling" is a link to show the scaled variants of f(z,c).
Clicking on the thumbnail image, a large version is shown.

desertMabrot

scaled 1.0
s=0.01
scaling
desertMabrot1

scaled 2.74
s=0.0
scaling
desertNova

scaled -10.0
s=-2.0
scaling
desertSqrt

scaled 200.0
s=4.0
scaling
desertBowArrow

scaled 1.0
s=0.0
scaling
desertVertical

scaled 1.0
s=1.0
scaling
\(\mathbf{\bf\:\cfrac{1}{z^2} + c}\)
\(\mathbf{\bf\:\cfrac{1}{z^2+1} + c}\)
\(\mathbf{\bf\:\cfrac{1}{z}+\cfrac{1}{z^2} + c}\)
\(\mathbf{\bf\:\cfrac{1}{z}-\cfrac{1}{\sqrt{z}} + c}\)
\(\mathbf{\bf\:\cfrac{1}{z^2-1} + c}\)
\(\mathbf{\bf\:\cfrac{1}{z}-\cfrac{1}{z^2} + c}\)
desertTri

scaled 1.0
s=0.0
scaling
desertQuad

scaled 1.0
s=0.0
scaling
desertQuint

scaled 1.0
s=0.0
scaling
desertNose

scaled 1.0
s=1.0
scaling
desertStoneShield

scaled -4.5
s=0.171573
scaling
desertBlueTube

scaled 1.0
s=1.0
scaling
\(\mathbf{\bf\:\cfrac{z}{z^3 + 1} + c}\)
\(\mathbf{\bf\:\cfrac{z}{z^4 + 1} + c}\)
\(\mathbf{\bf\:\cfrac{z}{z^5 + 1} + c}\)
\(\mathbf{\bf\:\cfrac{\sqrt{z^2+1}}{z+1} + c}\)
\(\mathbf{\bf\:\cfrac{\sqrt{z}+1}{\sqrt{z^2}+1} + c}\)
\(\mathbf{\bf\:\cfrac{\sqrt{z}}{z^2+1} + c}\)
desertBlueTube2

scaled -2.4
s=1.0
scaling
desertTube

scaled 1.0
s=1.0
scaling
desertBand

scaled -15.7
s=-1.0
scaling
desertBlueDouble

scaled 28.2
s=1.0
scaling
desertLancet

scaled 10.0
s=0.5
scaling
desertHHead

scaled2.3
s=-1.259921
scaling
\(\mathbf{\bf\:\cfrac{\sqrt{z}}{\sqrt{z^2+1}} + c}\)
\(\mathbf{\bf\:(\cfrac{z-1}{z+1})^2 + c}\)
\(\mathbf{\bf\:\cfrac{1-z}{\sqrt{z^2+1}} + c}\)
\(\mathbf{\bf\:\cfrac{\sqrt{z+1}}{\sqrt{z^2}+1} + c}\)
\(\mathbf{\bf\:\cfrac{\sqrt{z+1}}{\sqrt{z^3+1}} + c}\)
\(\mathbf{\bf\:\cfrac{\sqrt{z}}{\sqrt{1-z^3}} + c}\)